Translate

Jumat, 13 Februari 2015

TEORI DASAR TENTANG DIODA

1. Teori Dasar

Dioda ialah jenis VACUUM tube yang memiliki dua buah elektroda. Dioda tabung pertama kali diciptakan oleh seorang ilmuwan dari Inggris yang bernama Sir J.A. Fleming (1849-1945) pada tahun 1904.

Struktur dan skema dari dioda dapat dilihat pada gambar di atas.
Pada dioda, plate diletakkan dalam posisi mengelilingi katoda sedangkan heater disisipkan di dalam katoda. Elektron pada katoda yang dipanaskan oleh heater akan bergerak dari katoda menuju plate.

Untuk dapat memahami bagaimana cara kerja dioda pada rangkaian Elektronik kita dapat meninjau 3 situasi sebagai berikut ini yaitu :

   1. Dioda diberi tegangan nol
   2. Dioda diberi tegangan negative
   3. Dioda diberi tegangan positive
•         Dioda Diberi Tegangan Nol

Ketika dioda diberi tegangan nol maka tidak ada medan listrik yang menarik elektron dari katoda. Elektron yang mengalami pemanasan pada katoda hanya mampu melompat sampai pada posisi yang tidak begitu jauh dari katoda dan membentuk muatan ruang (Space Charge). Tidak mampunya elektron melompat menuju katoda disebabkan karena energi yang diberikan pada elektron melalui pemanasan oleh heater belum cukup untuk menggerakkan elektron menjangkau plate.

•         Dioda Diberi Tegangan Negative

Ketika dioda diberi tegangan negatif maka potensial negatif yang ada pada plate akan menolak elektron yang sudah membentuk muatan ruang sehingga elektron tersebut tidak akan dapat menjangkau plate sebaliknya akan terdorong kembali ke katoda, sehingga tidak akan ada arus yang mengalir.
•         Dioda Diberi Tegangan Positive

Ketika dioda diberi tegangan positif maka potensial positif yang ada pada plate akan menarik elektron yang baru saja terlepas dari katoda oleh karena emisi thermionic, pada situasi inilah arus listrik baru akan terjadi. Seberapa besar arus listrik yang akan mengalir tergantung daripada besarnya tegangan positif yang dikenakan pada plate. Semakin besar tegangan plate akan semakin besar pula arus listrik yang akan mengalir.

Oleh karena sifat dioda yang seperti ini yaitu hanya dapat mengalirkan arus listrik pada situasi tegangan tertentu saja, maka dioda dapat digunakan sebagai penyearah arus listrik (rectifier). Pada kenyataannya memang dioda banyak digunakan sebagai penyearah tegangan AC menjadi tegangan DC pada rangkaian Elektronik.

2. Karakteristik Dioda

Hampir semua peralatan Elektronika memerlukan sumber arus searah. Penyearah digunakan untuk mendapatkan arus searah dari suatu arus bolak-balik. Arus atau tegangan tersebut harus benar-benar rata tidak boleh berdenyut-denyut agar tidak menimbulkan gangguan bagi peralatan yang dicatu.

Dioda sebagai salah satu komponen aktif sangat popular digunakan dalam rangkaian Elektronika, karena bentuknya sederhana dan penggunaannya sangat luas. Ada beberapa macam rangkaian dioda, diantaranya : penyearah setengah gelombang (Half-Wave Rectifier), penyearah gelombang penuh (Full-Wave Rectifier), rangkaian pemotong (Clipper), rangkaian penjepit (Clamper) maupun pengganda tegangan (Voltage Multiplier). Di bawah ini merupakan gambar yang melambangkan dioda penyearah.

Sisi Positif (P) disebut Anoda dan sisi Negatif (N) disebut Katoda. Lambang dioda seperti anak panah yang arahnya dari sisi P ke sisi N. Karenanya ini mengingatkan kita pada arus konvensional dimana arus mudah mengalir dari sisi P ke sisi N.

3. Macam Macam Dioda

A. Dioda Umum
B. Dioda khusus

A. Dioda Umum

Yang dimaksud dioda umum adalah dioda yang dipergunakan dalam rangkaian rangkaian sederhana dan biasanya berfungsi sebagai perata atau pembatas arus listrik. Dioda umum ini dalam operasinya dapat bekerja bila diberi arus bolak balikatau searah
Arus listrik yang melewati dioda sebagian akan dilewatkan baik tegangan positifnya maupun tegangan negatifnya tergantung cara pemasangannya.

  Yang termasuk dioda umum :

- Dioda Silikon
- Dioda Germanium
- Dioda Rectifier
- Dioda Selenium
- Dioda Kuprok

B. Dioda khusus

Dioda jenis khusus bekerja bukan hanya sebagai perata/pembatas arus namun pemakaiannya sangat bervariasi, beberapa aplikasinya adalah sensor, stabilizer, penyearah terkendali dan lain sebagainya.

Yang termasuk dioda khusus :

- Dioda Zener
- Dioda LED
-Dioda Photosel/Photo Dioda
- Dioda Thyristor/SCR
- Dioda DIAC
- Dioda TRIAC
- Dioda Kapasitansi


4. Penjelasan Macam Dioda
-    Dioda Standar

Dioda jenis ini ada dua macam yaitu silikon dan germanium. Dioda silikon mempunyai tegangan maju 0.6V sedangkan dioda germanium 0.3V. Dioda jenis ini mempunyai beberapa batasan tertentu tergantung spesifikasi. Batasan batasan itu seperti batasan tegangan reverse, frekuensi, arus, dan suhu. Tegangan maju dari dioda akan turun 0.025V setiap kenaikan 1 derajat dari suhu normal.
Sesuai karakteristiknya dioda ini bisa dipakai untuk fungsi-fungsi sebagai berikut:
•    Penyearah sinyal AC
•    Pemotong level
•    Sensor suhu
•    Penurun tegangan
•    Pengaman polaritas terbalik pada dc input
Contoh dioda jenis ini adalah 1N400x (1A), 1N5392 (1.5A), dan 1N4148 (500mA).

-   Dioda Rectifier
Rectifier berfungsi sebagai penyearah Arus ( AC ke DC ). Biasanya Rectifier lebih dikenal sebagai Dioda karena penyearah arus ialah fungsi dasar dari dioda, tetapi lebih spesifik lagi merupakan fungsi dari rectifier.
 
-    Dioda Kiprok
kiprok berfungsi untuk regulator tegangan yang biasa digunkan pada kendaraan bermotor.
Maka jika arus 12 volt maka arus akan tetap stabil menjadi 12 volt meskipun arus naik. Namun memiliki ampere yang berbeda-beda. sebenarnya tidak ada bedanya dengan Rectifier namun kiprok adalah gabungan komponen tambahan sebagai penyetabil tegangan. Sehingga bila tunggangan tak dilengkapi aki, bohlam lampu pada sepeda motor tidak cepat putus.

-    Dioda Selenium
disebut dioda selenium karena banyak terbuat dari selenium. Dioda ini memiliki keandalan yang tinggi & mampu dialiri tegangan arus listrik yang cukup tinggi. Biasanya dipergunakan sebagai perata dalam rangkaian power supply. Dioda selenium dirancang memiliki 4 kaki; 2 kaki diantaranya merupakan bagian inputnya tegangan arus AC & 2 kaki lainnya sebagai output yang diberi tanda (+) & (-) yang menghasilkan arus DC.

-  Dioda Zener
dioda zener adalah diode yang berfungsi sebagai penstabil tegangan. Selain itu dioda zener juga dapat dipakai sebagai pembatas tegangan pada level tertentu untuk keamanan rangkaian. Karena kemampuan arusnya yang kecil maka pada penggunaan dioda zener sebagai penstabil tegangan untuk arus besar diperlukan sebuah buffer arus. Dioda zener dibias mundur (reverse).

- LED (light emiting diode)
Dioda jenis ini mempunyai lapisan fosfor yang bisa memancarkan cahaya saat diberi polaritas pada kedua kutubnya. LED mempunyai batasan arus maksimal yang mengalir melaluinya. Diatas nilai tersebut dipastikan umur led tidak lama. Jenis led ditentukan oleh cahaya yang dipancarkan. Seperti led merah, hijau, biru, kuning, oranye, infra merah dan laser diode. Selain sebagai indikator beberapa LED mempunyai fungsi khusus seperti LED inframerah yang dipakai untuk transmisi pada sistem remote control dan opto sensor juga laser diode yang dipakai untuk optical pick-up pada sistem CD. Dioda jenis ini dibias maju (forward).

-  Dioda photo / photodiode
Dioda photo merupakan jenis komponen peka cahaya. Dioda ini akan menghantar jika ada cahaya yang mauk dengan intensitas tertentu. aplikasi dioda photo banyak pada sistem sensor cahaya (optical). Contoh:pada optocoupler dan optical pick-up pada sistem CD. Dioda photo dibias maju (forward).

-    Thyristor - SCR, TRIAC dan DIAC
Thyristor berakar kata dari bahasa Yunani yang berarti ‘pintu'. Dinamakan demikian barangkali karena sifat dari komponen ini yang mirip dengan pintu yang dapat dibuka dan ditutup untuk melewatkan arus listrik. Ada beberapa komponen yang termasuk thyristor antara lain PUT (programmable uni-junction transistor), UJT (uni-junction transistor ), GTO (gate turn off switch), photo SCR dan sebagainya. Namun pada kesempatan ini, yang akan kemukakan adalah  komponen-komponen thyristor yang dikenal dengan sebutan SCR (silicon controlled rectifier), TRIAC dan DIAC. Pembaca dapat menyimak lebih jelas bagaimana prinsip kerja serta aplikasinya.
Struktur Thyristor
Ciri-ciri utama dari sebuah thyristor adalah komponen yang terbuat dari bahan semiconductor silicon. Walaupun bahannya sama, tetapi struktur P-N junction yang dimilikinya lebih kompleks dibanding transistor bipolar atau MOS. Komponen thyristor lebih digunakan sebagai saklar (switch) ketimbang sebagai penguat arus atau tegangan seperti halnya transistor.

Struktur dasar thyristor adalah struktur 4 layer PNPN seperti yang ditunjukkan pada gambar-1a. Jika dipilah, struktur ini dapat dilihat sebagai dua buah struktur junction PNP dan NPN yang tersambung di tengah seperti pada gambar-1b. Ini tidak lain adalah dua buah transistor PNP dan NPN yang tersambung pada masing-masing kolektor dan base. Jika divisualisasikan sebagai transistor Q1 dan Q2, maka struktur thyristor ini dapat diperlihatkan seperti pada gambar-2 yang berikut ini.

Terlihat di sini kolektor transistor Q1 tersambung pada base transistor Q2 dan sebaliknya kolektor transistor Q2 tersambung pada base transistor Q1.  Rangkaian transistor yang demikian menunjukkan adanya loop penguatan arus di bagian tengah. Dimana diketahui bahwa Ic =  Ib, yaitu arus kolektor adalah penguatan dari arus base.
Jika misalnya ada arus sebesar Ib yang mengalir pada base transistor Q2, maka akan ada arus Ic yang mengalir pada kolektor Q2. Arus kolektor ini merupakan arus base Ib pada transistor Q1, sehingga akan muncul penguatan pada pada arus kolektor transistor Q1. Arus kolektor transistor Q1 tdak lain adalah arus base bagi transistor Q2. Demikian seterusnya sehingga makin lama sambungan PN dari thyristor ini di bagian tengah akan mengecil dan hilang. Tertinggal hanyalah lapisan P dan N dibagian luar.
Jika keadaan ini tercapai, maka struktur yang demikian todak lain adalah struktur dioda PN (anoda-katoda) yang sudah dikenal. Pada saat yang demikian, disebut bahwa thyristor dalam keadaan ON dan dapat mengalirkan arus dari anoda menuju katoda seperti layaknya sebuah dioda.


Bagaimana kalau pada thyristor ini kita beri beban lampu dc dan diberi suplai tegangan dari nol sampai tegangan tertentu seperti pada gambar 3. Apa yang terjadi pada lampu ketika tegangan dinaikkan dari nol. Ya betul, tentu saja lampu akan tetap padam karena lapisan N-P yang ada ditengah akan mendapatkan reverse-bias (teori dioda). Pada saat ini disebut thyristor dalam keadaan OFF karena tidak ada arus yang bisa mengalir atau sangat kecil sekali. Arus tidak dapat mengalir sampai pada suatu tegangan reverse-bias tertentu yang menyebabkan sambungan NP ini jenuh dan hilang. Tegangan ini disebut tegangan breakdown dan pada saat itu arus mulai dapat mengalir melewati thyristor sebagaimana dioda umumnya. Pada thyristor tegangan ini disebut tegangan breakover Vbo.
SCR
Telah dibahas, bahwa untuk membuat thyristor menjadi ON adalah dengan memberi arus trigger lapisan P yang dekat dengan katoda. Yaitu dengan membuat kaki gate pada thyristor PNPN seperti pada gambar-4a. Karena letaknya yang dekat dengan katoda, bisa juga pin gate ini disebut pin gate katoda (cathode gate). Beginilah SCR dibuat dan simbol SCR digambarkan seperti gambar-4b. SCR dalam banyak literatur disebut Thyristor saja.

Melalui kaki (pin) gate tersebut memungkinkan komponen ini di trigger menjadi ON, yaitu dengan memberi arus gate.  Ternyata dengan memberi arus gate Ig yang semakin besar dapat menurunkan tegangan breakover (Vbo) sebuah SCR. Dimana tegangan ini adalah tegangan minimum yang diperlukan SCR untuk menjadi ON. Sampai pada suatu besar arus gate tertentu, ternyata akan sangat mudah membuat SCR menjadi ON. Bahkan dengan tegangan forward yang kecil sekalipun. Misalnya 1 volt saja atau lebih kecil lagi. Kurva tegangan dan arus dari sebuah SCR adalah seperti yang ada pada gambar-5 yang berikut ini.


Pada gambar tertera tegangan breakover Vbo, yang jika tegangan forward SCR mencapai titik ini, maka SCR akan ON. Lebih penting lagi adalah arus Ig yang dapat menyebabkan tegangan Vbo turun menjadi lebih kecil. Pada gambar ditunjukkan beberapa arus Ig dan korelasinya terhadap tegangan breakover. Pada datasheet SCR, arus trigger gate ini sering ditulis dengan notasi IGT (gate trigger current). Pada gambar ada ditunjukkan juga arus Ih yaitu arus holding yang mempertahankan SCR tetap ON. Jadi agar SCR tetap ON maka arus forward dari anoda menuju katoda harus berada di atas parameter ini.
Sejauh ini yang dikemukakan adalah bagaimana membuat SCR menjadi ON. Pada kenyataannya, sekali SCR mencapai keadaan ON maka selamanya akan ON, walaupun tegangan gate dilepas atau di short ke katoda. Satu-satunya cara untuk membuat SCR menjadi OFF adalah dengan membuat arus anoda-katoda turun dibawah arus Ih (holding current). Pada gambar-5 kurva I-V SCR, jika arus forward berada dibawah titik Ih, maka SCR kembali pada keadaan OFF. Berapa besar arus holding ini, umumnya ada di dalam datasheet SCR.
Cara membuat SCR menjadi OFF tersebut adalah sama saja dengan menurunkan tegangan anoda-katoda ke titik nol. Karena inilah SCR atau thyristor pada umumnya tidak cocok digunakan untuk aplikasi DC. Komponen ini lebih banyak digunakan untuk aplikasi-aplikasi tegangan AC, dimana SCR bisa OFF pada saat gelombang tegangan AC berada di titik nol.
Ada satu parameter penting lain dari SCR, yaitu VGT. Parameter ini adalah tegangan trigger pada gate yang menyebabkab SCR ON. Kalau dilihat dari model thyristor pada gambar-2, tegangan ini adalah tegangan Vbe pada transistor Q2. VGT seperti halnya Vbe, besarnya kira-kira 0.7 volt. Seperti contoh rangkaian gambar-8 berikut ini sebuah SCR diketahui memiliki IGT = 10 mA dan VGT = 0.7 volt. Maka dapat dihitung tegangan Vin yang diperlukan agar SCR ini ON adalah sebesar :
Vin = Vr + VGT
Vin = IGT(R) + VGT = 4.9 volt

Gambar-8 : Rangkaian SCR
TRIAC
Boleh dikatakan SCR adalah thyristor yang uni-directional, karena ketika ON hanya bisa melewatkan arus satu arah saja yaitu dari anoda menuju katoda. Struktur TRIAC sebenarnya adalah sama dengan dua buah SCR yang arahnya bolak-balik dan kedua gate-nya disatukan. Simbol TRIAC ditunjukkan pada gambar-6. TRIAC biasa juga disebut thyristor bi-directional.

Gambar-6 : Simbol TRIAC
TRIAC bekerja mirip seperti SCR yang paralel bolak-balik, sehingga dapat melewatkan arus dua arah. Kurva karakteristik dari TRIAC adalah seperti pada gambar-7 berikut ini.

Gambar-7 : Karakteristik kurva I-V TRIAC
Pada datasheet akan lebih detail diberikan besar parameter-parameter seperti  Vbo dan -Vbo, lalu IGT dan -IGT, Ih serta -Ih dan sebagainya. Umumnya besar parameter ini simetris antara yang plus dan yang minus. Dalam perhitungan desain, bisa dianggap parameter ini simetris sehingga lebih mudah di hitung.
DIAC
Kalau dilihat strukturnya seperti gambar-8a, DIAC bukanlah termasuk keluarga thyristor, namun prisip kerjanya membuat ia digolongkan sebagai thyristor. DIAC dibuat dengan struktur PNP mirip seperti transistor. Lapisan N pada transistor dibuat sangat tipis sehingga elektron dengan mudah dapat menyeberang menembus lapisan ini. Sedangkan pada DIAC, lapisan N di buat cukup tebal sehingga elektron cukup sukar untuk menembusnya. Struktur DIAC yang demikian dapat juga dipandang sebagai dua buah dioda PN dan NP, sehingga dalam beberapa literatur DIAC digolongkan sebagai dioda.

Gambar-8 : Struktur dan simbol DIAC
Sukar dilewati oleh arus dua arah, DIAC memang dimaksudkan untuk tujuan ini. Hanya dengan tegangan breakdown tertentu barulah DIAC dapat menghantarkan arus. Arus yang dihantarkan tentu saja bisa bolak-balik dari anoda menuju katoda dan sebaliknya. Kurva karakteristik DIAC sama seperti TRIAC, tetapi yang hanya perlu diketahui adalah berapa tegangan breakdown-nya.
Simbol dari DIAC adalah seperti yang ditunjukkan pada gambar-8b. DIAC umumnya dipakai sebagai pemicu TRIAC agar ON pada tegangan input tertentu yang relatif tinggi. Contohnya adalah aplikasi dimmer lampu yang berikut pada gambar-9.

4. Fungsi Dioda
1.    Penyearah, contoh : dioda bridge
2.    Penstabil tegangan (voltage regulator), yaitu dioda zener
3.    Pengaman /sekering
4.    Sebagai rangkaian clipper, yaitu untuk memangkas/membuang level sinyal yang ada di atas atau di bawah level tegangan tertentu.
5.    Sebagai rangkaian clamper, yaitu untuk menambahkan komponen dc kepada suatu sinyal ac
6.    Pengganda tegangan.
7.    Sebagai indikator, yaitu LED (light emiting diode)
8.    Sebagai sensor panas, contoh aplikasi pada rangkaian power amplifier
9.    Sebagai sensor cahaya, yaitu dioda photo
10.    Sebagai rangkaian VCO (voltage controlled oscilator), yaitu dioda varactor

5.  Aplikasi Penggunaan

Dioda banyak diaplikasikan pada rangkaian penyearah arus (rectifier) power suplai atau konverter AC ke DC. Di pasar banyak ditemukan dioda seperti 1N4001, 1N4007 dan lain-lain. Masing-masing tipe berbeda tergantung dari arus maksimum dan juga tegangan breakdown-nya. Zener banyak digunakan untuk aplikasi regulator tegangan (voltage regulator). Zener yang ada dipasaran tentu saja banyak jenisnya tergantung dari tegangan breakdown-nya. Di dalam datasheet biasanya spesifikasi ini disebut Vz (zener voltage) lengkap dengan toleransinya, dan juga kemampuan dissipasi daya.


LED sering dipakai sebagai indikator yang masing-masing warna bisa memiliki arti yang berbeda. Menyala, padam dan berkedip juga bisa berarti lain. LED dalam bentuk susunan (array) bisa menjadi display yang besar. Dikenal juga LED dalam bentuk 7 segment atau ada juga yang 14 segment. Biasanya digunakan untuk menampilkan angka numerik dan alphabet.

Contoh circuit sederhana dari diode

-   Rangkaian penyearah arus listrik dari AC ke DC

-    Rangkaian regulator tegangan

Implementasi diode sebagai pelipat ganda frekuensi..
misal frekuensi input 50 Hz maka output menjadi 100 Hz

-  Diode sebagai pencampur sinyal

-    Implementasi LED

-    Diode sebagai saklar (Switch)

Sumber://www.blogger.com/blogger.g?blogID=6977057909693033047#editor/target=post;postID=1964589733605593542

Tidak ada komentar:

Posting Komentar